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Abstract: Nonempirical, ab initio calculations of the electronic structure of the ground state of benzene have been 
made. The AO basis used is the same as that of a "full 7r" MO-CI calculation already in the literature, and the 22 
1Ai8 states obtained in this treatment are identical with those obtained before. The lowest energy is —230.4546 au 
with equilibrium separations of the nuclei. The VB results obtained here differ strongly from those of the corre­
sponding semiempirical treatments that have been done heretofore, in that the wave function contains a far larger 
contribution from basis functions of the polar type. The nature of the differences between the two methods is in­
vestigated by calculating a number of properties of the wave function. Among those determined are the first-order, 
spinless density matrices corresponding to the various bonding schemes, and it is found that the symmetry VB func­
tion representing the singly ortho polar structures has a very large bond order between ortho positions and that this 
explains the surprisingly high stability of this function. The resonance energy of benzene is also considered, and 
it is found that the traditional procedure yields poor results. However, when a more sophisticated form of the wave 
functions for the localized and delocalized structures is used, a value of 61.4 kcal is obtained for the vertical reso­
nance energy. This compares very well with the value of 66.0 kcal obtained from experimental data. 

Benzene is the archetypal aromatic hydrocarbon, 
and over the years it has been used as a test of 

many chemical theories, both qualitative and quanti-
tive. Thus, among the early tests of quantum me­
chanics on molecular systems, the one on benzene done 
by Pauling and Wheland2 occupies a position important 
both intrinsically and because it provided a qualitative 
picture capable of extension to more complicated aro­
matic hydrocarbons. These workers used Slater's311 

generalization of the Heitler-London H2 wave func­
tion,313 and applied this to the IT electrons only. In a 
remarkable synthesis of the ideas of classical bonding 
theory and the graphical method of determining linearly 
independent valence-bond wave functions discovered 
by Rumer,4 Pauling and Wheland were able to show 
that benzene could be considered a superposition of 
the various Kekule and Dewar bonding schemes pro­
posed much earlier. The analysis was highly approxi­
mate of course, with many estimates and assumptions 
concerning the unimportance of supposedly small 
quantities, since at the time these calculations were 
done there was no possibility of an ab initio study of 
a system this large. The years immediately following 
produced no satisfactory quantitative methods for 
handling VB wave functions, and in 1950 it was still 
necessary for Craig5 to use most of the same approxima­
tions in a discussion of benzene which included polar 
type resonance structures in the wave function. In 
this study he found the polar functions to comprise 
only a small fraction of the total wave function, and 
this type of structure has since been considered un­
important in benzene. 

Since 1950 the development of methods to handle 
VB calculations in a more quantitative fashion has been 
slow. However, the formulas of Lowdin6 for matrix 
elements of determinal wave functions with nonorthog-
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onal orbitals have provided one of the links in a prac­
tical method for ab initio VB calculations. The other 
part of the process requires the expression of the VB 
functions in Slater determinants,7 and with the present 
capability of computers several calculations have been 
done in the last few years.8 In this connection a ques­
tion of nomenclature has also arisen. Several "valence-
bond" methods have been suggested recently9 which 
use various amounts of orthogonalization to simplify 
the calculations. Therefore, this term has different 
meanings for different workers, and for purposes of 
defmiteness we state that the expression "valence bond" 
is reserved to have its traditional sense for this article. 
Thus we use nonorthogonalized AO's of the appropri­
ate atoms just as they stand. Actually, we modify 
this position somewhat, also, as will be described later. 

In this laboratory a still different method for dealing 
with VB wave functions has been developed. The 
procedure involves expressing the VB function in terms 
of the Young operator, 9NPN,10 and among the pres­
ently available methods this one appears to be the 
most economical of computer effort. 

During the time that the approximate VB calculations 
were being done there was no indication either from the 
theory itself or the comparisons with experiment that 
these results were grossly incorrect, and it was felt that 
the various approximations used made only relatively 
small quantitative distortions of the results. Never­
theless, now that methods for doing VB calculations 
have been developed to the point where ab initio treat­
ments are possible, it is important to test this supposi­
tion. Using benzene as a test molecule we have per­
formed VB calculations to investigate this question. 
A preliminary report of the results has been given al­
ready,11 and the present article is a more complete 
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report. As was seen in the earlier communication 
the ab initio calculation has aspects in striking disagree­
ment with the previous approximate treatments. This 
fact immediately raises two questions: (1) what is it 
about the standard approximations used in earlier 
work that has caused the results to differ so far from 
the ab initio, and (2) what consequences, if any, do the 
new results have for the way that chemists should look 
upon the electronic structure of benzene and other 
aromatic hydrocarbons? 

The first of these questions is far easier to answer 
than is the second, and its discussion constitutes the 
major portion of this article. We shall return to the 
other question more briefly in the Conclusion. 

Detailed Description of Calculation 
The previous, approximate calculations of the struc­

ture of the benzene molecule have all been done with 
the neglect of the 36 electrons comprising the a bonds 
and the Is shells of the carbon atoms, and the actual 
calculations involved just the six 7r electrons. The 
effects of the core were estimated and included in terms 
of certain "penetration" integrals, the values of which 
do not effect differences in energy. Such a treatment 
of the a electrons is not suitable for an ab initio calcula­
tion, of course, and it is necessary for us to use a differ­
ent approach to handle these electrons. Among the 
various possibilities that might be tried, we have chosen 
to use the 18 c-type molecular orbitals from the SCF 
calculation as the functions for the electrons in question, 
and the six p2 orbitals at the carbons are used for the 
remaining electrons, of course. There are two reasons 
that this choice is made. 1. It is felt that the properties 
of the IT electrons will be reasonably insensitive to the 
detailed form of the functions representing the a elec­
trons, and these molecular orbitals are the simplest 
accurate form for them. 2. The set of functions con­
structed in the way we have described spans the same 
linear space as the set of functions obtained by opening 
only the IT molecular orbitals and doing a "full" CI 
after an SCF calculation. Thus if the same AO basis 
were used, the present VB calculation and the "full" 
TV MO-CI should give identical results. Actually, 
we have used exactly the same AO basis as that used 
by Buenker, Whitten, and Petke,12 and the VB and the 
MO-CI results are identical. 

If all the possible bonding schemes are drawn for the 
six p2 orbitals one obtains 22 different types, and these 
are shown in Figure 1. The Rumer diagrams for the 
construction of the VB functions can follow these bond­
ing diagrams exactly, since we are working with singlet 
states. Each of these bonding schemes gives rise to a 
linearly independent symmetry function, and the arabic 
numeral given in the figure shows the number of VB 
functions in the corresponding symmetry function. 
The results of ref 10 are directly usable here, and, for 
example, the function corresponding to I is 

* i = 0NPN{4Pl(l)p2(4)p3(2)p4(5)p5(3)p6(6)-
2Pl(l)p2(4)p3(2)p4(3)p6(5)p6(6)-
2Pl(l)p2(2)p3(4)p4(5)p6(3)p6(6) + 

Pl(l)p2(2)p3(4)p4(3)p5(5)p6(6) -
3Pl(l)p2(2)p3(3)p4(4)P5(5)p6(6)}S(7, . . ., 42) (1) 

(12) R. J. Buenker, J. L. Whitten, and J. D. Petke, / . Chem. Phys., 49, 
2261 (1968). 
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Figure 1. Representative rumer diagrams and number of equi­
valent structures for each of the 22 1Ai8 symmetry functions. 

where S represents a product function of the a orbitals 
with the numbering arranged to match the numbering 
in 0NPN correctly. This function as it is written is 
also not yet normalized. 

Actually the generation of these different VB func­
tions and the projection of the corresponding spatial 
symmetry functions is fully automated in the programs 
used to make these calculations. The use of exactly 
projected symmetry functions reduces significantly 
the labor of constructing the matrix elements, since the 
turnover rule removes one operator in the expressions. 

Throughout this article we will have occasion to rep­
resent both the individual VB function and the cor­
responding 1Ai8 symmetry function by the Roman 
numerals given in Figure 1. To avoid confusion we 
indicate the symmetry function by an asterisk. Thus, 
VI is used to represent the individual VB function with 
w bonds between carbons 2-4 and 5-6. This function 
also has carbon 3 negatively charged. On the other 
hand, the symbol VI* is used to represent the 1Ai8 sym­
metry function corresponding to this same bonding 
diagram. There are 12 terms in this function. 

After the matrices for H and S are generated the 
eigenvalues and the eigenvectors are obtained by stan­
dard techniques. The occupation numbers are deter­
mined by an inverse-overlap population analysis.13 

Such occupation numbers take into consideration the 
unique aspect of each function and compensate for 
their mutual overlaps. 

The functions may for convenience be arranged in 
four groups according to the amount of polarity. Thus 
there are among the 1Ai8 symmetry functions 2 covalent, 
6 singly polar, 11 doubly polar, and 3 triply polar types. 
These are constructed from the total of 175 individual 
bonding or Rumer diagrams. The results of several 
calculations are given in Table I. For comparison 
purposes the SCF energy was recalculated and this 

(13) J. M. Norbeck and G. A. Gallup, Chem. Phvs. Lett., 21, 495 
(1973). 
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Table I. Comparison of Energies for Various Partial 
Calculations, the SCF, and the "Full" Calculation 

No. of 
symmetry 
functions 

Energy, 
hartrees 

Kekule 
Kekule and Dewar 
SCF 
Ortho polar only 
Covalent & ortho polar 
Covalent & singly polar 
"Full" 

1 
2 
1 
2 
4 
8 

22 

-230:2972 
-230.3026 
-230.3754 
-230.3781 
-230.4125 
-230.4373 
-230.4546 

Thus, at first glance, it appears that the approximations 
made by the early investigators were not too severe. 
However, the energy found here is seen to be 0.0728 
au (45.7 kcal) above the SCF energy shown in Table I. 
This disagrees with the results obtained by Coulson 
and Newton14 who compared the SCF and VB energies 
using the w electron model of Goeppert-Mayer and 
Sklar.1S Their results, which were done with the neglect 
of nonnearest neighbor overlap and exchange integrals, 
show the SCF energy to be 6.7 kcal higher than the 
covalent only VB calculation. Recently further com­
parisons of the VB and SCF-MO-CO approaches have 

Table II. Diagonal Energies for 22 1AiJ, Symmetry Functions" 

Function 

I* 
II* 
III* 
IV* 

v* 
VI* 
VII* 
VIII* 
IX* 
X* 
XI* 
XII* 
XIII* 
XIV 
XV* 
XVI* 
XVII* 
XVIII* 
XIX* 
XX* 
XXI* 
XXII* 

Energy 

Diagonal 
energy 

-230.2972(2) 
-230.2838(3) 
- 2 3 0 
- 2 3 0 

.3244(1) 

.1732(4) 
-230.0452(6) 
- 2 2 9 
- 2 2 9 
- 2 2 9 
- 2 3 0 
- 2 2 9 
- 2 2 9 
- 2 2 9 
- 2 2 9 
- 2 2 9 
- 2 2 9 
- 2 2 9 
- 2 2 9 
- 2 2 8 
- 2 2 9 
- 2 2 9 
- 2 2 9 

.7039(11) 

.8100(7) 

.7185(9) 

. 1039 (5) 

. 7620 (8) 

.7072(10) 

.3489(18) 

.5664(15) 

.5412(16) 

.5810(14) 

.7029(12) 

.3398(19) 

.8900(21) 

. 2774 (20) 

.6765(13) 

.3699(17) 
-228.4681 (22) 

Eigen­
vector 

0.6586 
0.3539 

- 2 3 0 

Occ no. 

0.7760 
0.2240 

3026 

VwUvmcin 
Eigen­
vector 

0.2428 
0.1335 
0.3847 
0.2154 
0.1383 
0.0282 
0.0600 
0.0623 

— 

anu Miigiy puitu 

Occ no. 

0.0622 
0.0194 
0.4753 
0.2756 
0.0980 
0.0078 
0.0234 
0.0381 

230.4373 

Eigen­
vector 

0.2684 
0.1353 
0.2666 
0.1418 
0.1156 
0.0281 
0.0483 
0.0359 
0.1303 
0.0425 
0.0386 
0.0090 
0.0205 
0.0172 
0.0131 
0.0359 
0.0052 
0.0017 
0.0010 
0.0283 
0.0042 
0.0003 

— r uii * 

Occ no. 

0.2192(2) 
0.0607(6) 
0.2528(1) 
0.1447(3) 
0.0965(4) 
0.0164(12) 
0.0345(7) 
0.0241 (8) 
0.0622(5) 
0.0226(9) 
0.0214(10) 
0.0014(17) 
0.0061 (14) 
0.0053(15) 
0.0025(16) 
0.0185(11) 
0.0005(18) 
0.0001 (20) 
0.0000(21) 
0.0103(13) 
0.0002(19) 
0.0000(22) 

-230.4546 

<• Eigenvectors and occupation numbers for various calculations discussed in the text. 

value is also given in the table. The partial calculations 
done are Kekule only, covalent only (Pauling and Whe-
land's case), orthopolar only, covalent and orthopolar 
(Craig's case), covalent and singly polar, and finally, 
of course, the "full" -K calculation. The diagonal 
energies of each of the symmetry functions and the 
coefficients and occupation numbers for three of the 
calculations are given in Table II. It will be noticed 
that the row labels in this table are asterisked and we 
emphasize that this means the entries refer to normalized 
symmetry functions and not to normalized functions 
corresponding to individual Rumer diagrams. The 
phases of the functions are arranged so that the co­
efficients are all positive, also. 

Comparison with Previous Work 

As was indicated in the introduction to this article 
the previous VB work on benzene is semiempirical 
in nature, and the early work by Pauling and Wheland 
gave the result that I* is approximately four times more 
important than II* in the wave function containing 
only covalent terms. In Table II the columns headed 
"Covalent" show the corresponding results for this 
ab initio calculation. Except for a very slight increase 
in the importance of the II* function, these results 
agree very well with the earlier semiempirical results. 

been published by Campion and Karplus.16 They 
too used the Goeppert-Mayer and Sklar approximation 
and in the systems studied (allyl radical, Jrans-butadiene, 
and methylene cyclobutadienyl radical) found the co­
valent structures to give a lower energy than the cor­
responding SCF function. However, the ab initio 
results reported here and earlier17 have always indicated 
that the SCF energy is lower than that obtained by 
using only covalent functions. The exact nature of 
the inadequacies of this approximate approach is not 
clear at the present. 

An even more startling discrepancy between semi-
empirical and ab initio results is observed when the two 
ortho singly polar functions (III*, IV*) are included 
with the covalent pair. Table III shows the eigen­
vectors and the occupation numbers13 for each case, 
and it is seen that there is practically a complete reversal 
of the importance of the covalent as compared to the 
polar functions. In fact, this result would be predicted 
from a careful examination of Table I, since there it is 
seen that the energy of the ortho polar alone function 

(14) C. A. Coulson and M. D. Newton, MoI. Phys., 15, 305 (1968). 
(15) M. Goeppert-Mayer and A. Sklar, J. Chem. Phys., 6,219 (1938). 
(16) W. J. Campion and M. Karplus, MoI. Phys., 25, 921 (1973). 
(17) J. M. Norbeck and G. A. Gallup, Int. J. Quantum Chem., Symp., 

7,161 (1973). 
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The entries are the squares of the expansion coefficients, 
which form a satisfactory set of occupation numbers, 
because the MO-CI basis is orthonormal. There is a 
slight complication with some of the configurations, 
e.g., a2ueig

3e2ubig is a case in point, since these give rise 
to two 1A^ functions, and the corresponding entry in 
Table IV is the sum of the squares from all of the func­
tions of the configuration in such cases. It is easily 
seen that the ortho singly polar function has the smallest 

• MO configuration . 
a2u 

2 
2 
2 
1 
O 
O 
2 
1 
1 
O 
2 
2 
1 
O 
O 
O 

e i e 

4 
2 
2 
3 
4 
4 
1 
2 
2 
3 
O 
O 
1 
2 
2 
O 

C2u 

O 
2 
O 
1 
2 
O 
2 
3 
1 
2 
4 
2 
3 
4 
2 
4 

big 

O 
O 
2 
1 
O 
2 
1 
1 
2 
1 
O 
2 
1 
O 
2 
2 

I* 

0.3882 
0.3456 
0.0099 
0.1196 
0.0095 
0.0057 
0.0145 
0.0142 
0.0076 
0.0075 
0.0060 
0.0029 
0.0365 
0.0021 
0.0277 
0.0026 

II* 

0.2900 
0.2811 
0.0 
0.1137 
0.0 
0.0231 
0.0 
0.0 
0.0 
0.0 
0.0245 
0.0 
0.0343 
0.0 
0.0225 
0.0020 

III* 

0.7569 
0.1717 
0.0094 
0.0142 
0.0090 
0.0 
0.0035 
0.0034 
0.0018 
0.0018 
0.0 
0.0027 
0.0047 
0.0020 
0.0137 
0.0051 

IV* 

0.6083 
0.2062 
0.0 
0.0361 
0.1413 
0.0 
0.0543 
0.0 
0.0285 
0.0 
0.0 
0.0 
0.0105 
0.0308 
0.0165 
0.0032 

V* 

0.4652 
0.2029 
0.1449 
0.0355 
0.0 
0.0 
0.0 
0.0523 
0.0 
0.0274 
0.0 
0.0421 
0.0103 
0.0 
0.0162 
0.0031 

VI* 

0.4728 
0.2062 
0.0 
0.0361 
0.1413 
0.0 
0.0543 
0.0 
0.0285 
0.0 
0.0 
0.0 
0.0105 
0.0308 
0.0165 
0.0032 

VII* 

0.3527 
0.3140 
0.0090 
0.1142 
0.0086 
0.0467 
0.0132 
0.0134 
0.0069 
0.0069 
0.0493 
0.0026 
0.0332 
0.0019 
0.0251 
0.0024 

VIII* 

0.2305 
0.2091 
0.0459 
0.0788 
0.0441 
0.0598 
0.0677 
0.0665 
0.0355 
0.0349 
0.0631 
0.0134 
0.0229 
0.0096 
0.0167 
0.0016 

contributions from the excited states, and this certainly 
confirms the importance of this term in the total wave 
function. It may be pointed out that the square roots 
of the entries in Table IV in those cases where there is 
only one function per configuration is just the magnitude 
of the overlap, and hence, we see that the overlap be­
tween the SCF function and III* is 0.870, which shows 
that there is considerable similarity between these two 
functions. It is also observed that the configurations 
giving rise to 1AiC functions involve double, triple, 
quadruple, and sextuple excitations. Thus none of 
the 1Ai8 VB symmetry functions include singly excited 
MO configurations, which are well known to be pres­
ent in ground state CI wave functions to only a minor 
extent. 

Spinless, First-Order Density 
Matrices for VB Functions 

The expansions discussed in the last section repre­
sent one type of multielectron wave function in terms 
of another type. This does not provide any real sim­
plification for the understanding of the properties of 
these functions. In this section we give the first-order 
density matrices for each of the basis function, I* 
through VIII*. These densities provide a single-par­
ticle picture of the VB functions for determining a quali­
tative picture of their properties. Because of the or­
thogonality between the a and the tr electron orbitals in 
this system, this density is separable into two parts 
corresponding to these types of orbitals. Thus we have 

y(l\l') = 42fw,2, . . . . 4 2 ) ^ ( 1 , 2, . . . , 4 2 ) X 

dT! = 7 , ( l | l ' ) + Z Y ^ ( I ) P / ! ' ) (2) 

where the portion corresponding to the a elections has 
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Table III. Comparison of Semiempirical and ab Initio Calculation 
Including Covalent and Ortho Polar Symmetry Function 

I* 
II* 
III* 
IV* 

-— Semiempirical0 — . 
Eigenvector 

0.6179 
0.3553 
0.2385 
0.1187 

Occ no. 

0.4932 
0.1631 
0.2755 
0.0682 

Eigenvector 

0.2487 
0.1314 
0.4832 
0.2534 

Occ no. 

0.0440 
0.0127 
0.6772 
0.2661 

" See ref 5. 

Table IV. Expansion of VB Functions in Terms of MO-CI Functions 

is 0.076 au (47.7 kcal) lower than the covalent only 
function. It is further seen that the best convergence 
rate to the "full" value is not obtained by introducing 
new functions in the same order as would be suggested 
by the semiempirical results. 

We also point out the somewhat unexpected fact 
that the diagonal energy of III* is 0.027 au (16.9 kcal) 
lower than the corresponding value for I* as can be 
seen from Table II. This is also in direct contradiction 
to the semiempirical results. 

From the foregoing comparisons it is seen that there 
are serious differences between the results of the two 
approaches, and it is certainly not obvious from an 
examination of only the energies and the wave functions 
given so far where the difficulties lie. The various VB 
wave functions are multielectron functions and as such 
resist a simple interpretation and understanding. It 
was thought that these functions were understood, of 
course, but the results described above cast consider­
able doubt on this. In order to attempt a better under­
standing of the properties of VB wave functions, we 
have made several analyses of these functions into other 
terms and in particular into simpler forms. This has 
been done for the covalent and singly polar functions 
only, since this subset adequately displays the discrep­
ancies between the ab initio and semiempirical ap­
proaches. 

Expansion of VB Functions in 
Terms of MO-CI Functions 

The set of VB functions and the set of MO-CI func­
tions span the same linear space, and therefore, either 
set serves as a basis for this space. In particular, there­
fore, the VB functions may be expressed as linear com­
binations of the MO-CI functions. These calculations 
have been made, and the results are shown in Table IV. 
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Table V. Values of <?; and <?;,- for VB Symmetry Functions 

Function 

I* 
II* 
III* 
IV* 
V* 
VI* 
VII* 
VIII* 

Covalent only 
Covalent and 

singly polar 

Qi 

0.9422 
0.9504 
0.8143 
0.8605 
0.9419 
0.9224 
0.9658 
1.0459 
0.9391 

0.7973 

01* 

0.0742 
0.0658 
0.2118 
0.1622 
0.0622 
0.1048 
0.0490 

-0 .0386 
0.0778 

0.2302 

?13 

-0 .0144 
-0 .0146 
- 0 . 0 1 6 0 
-0 .0162 

0.0048 
-0 .0230 
- 0 . 0 1 3 2 
- 0 . 0 0 6 2 
-0 .0149 

-0 .0151 

?14 

-0 .0021 
-0 .0016 
-0 .0100 
-0 .0064 
- 0 . 0 0 9 0 
-0 .0041 
-0 .0015 
-0 .0010 
-0 .0020 

-0 .0124 

atoms, while the Kekule function, I*. has a relatively 
small bond order between these positions. The bond­
ing between centers mutually meta and para is slightly 
antibonding in all cases except for the function V*, 
which is slightly bonding for meta pairs. Examination 
of the bonding diagram for V* shows that this is cer­
tainly consistent. However, among all of the entries 
in the table, the wave function consisting of the covalent 
and the singly polar functions has the greatest bonding 
between ortho positions. 

The charge and bond orders given in Table V are for 
the symmetry functions based upon the particular bond-

Table VI. Values of qi and qtj for Individual, Nonsymmetry VB Functions" 

j 

1 
2 
3 
4 
5 
6 
2 
3 
4 
5 
6 
3 
4 
5 
6 
4 
5 
6 
5 
6 
6 

I 

0.9680 
- 0 . 0 5 0 6 
- 0 . 0 0 6 2 
- 0 . 0 0 1 6 
- 0 . 0 0 6 2 

0.0966 

II 

1.1042 
-0 .0451 
-0 .0063 
-0 .0014 
-0 .0063 
-0 .0451 

0.9585 
0.0956 

-0 .0063 
-0 .0009 
-0 .0019 

III 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.9187 
0.0947 

- 0 . 0 0 6 4 
-0 .0018 
-0 .0051 

0.0645 
-0 .0514 
-0 .0065 
-0 .0012 

0.9720 
0.0985 

-0 .0126 
1.0198 

- 0 . 1 1 0 0 
2.1289 

IV 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
1.0577 

- 0 . 0 4 5 2 
-0 .0066 
-0 .0008 
-0 .0051 

0.9576 
0.0954 

-0 .0066 
- 0 . 0 0 1 2 

0.9602 
- 0 . 0 4 6 3 
-0 .0028 

1.1681 
- 0 . 1 1 4 4 

2.1234 

V 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
1.0544 

-0 .0523 
- 0 . 0 0 6 5 
-0 .0013 

0.0057 
0.9672 
0.0985 

- 0 . 0 1 2 6 
-0 .0007 

1.0189 
-0 .1111 

0.0001 
2.2396 

-0 .1144 
1.1092 

VI 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.9153 
0.0947 

- 0 . 0 0 6 6 
-0 .0012 
-0 .0023 

0.9619 
-0 .0536 
-0 .0025 
-0 .0007 

1.1740 
-0 .1107 
- 0 . 0 0 3 3 

2.2235 
-0 .1093 

1.1154 

VII 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.9194 
0.0968 

-0 .0127 
-0 .0002 
-0 .0028 

1.0153 
-0 .1116 

0.0001 
-0 .0002 

2.2482 
-0 .1116 
-0 .0127 

VIII 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
1.0442 

- 0 . 0 4 6 4 
-0 .0028 
-0 .0008 

0.0058 
1.1610 

-0 .1103 
-0 .0035 
-0 .0008 

2.2261 
-0 .1103 
-0 .0028 

° The positions left blank can be determined from the symmetry and the other values. 

not been written out. Since we have taken the cr or-
bitals to be doubly occupied in all configurations y„ 
is constant and the difference between the various VB 
functions is reflected in differences in the Yy's. These 
numbers must satisfy the relation 

JlyijSij = 6 (3) 

(4) 

which is the number of TV electrons, of course. As is 
well known, the quantities 

Sn = (P;|PJ) SU = 1 

<la 

qt = yuSu 

- ytjSn + jjtSji 

(5) 

(6) 

can be interpreted as the atomic and overlap charges, 
respectively. The sign and magnitude of the overlap 
charge determines the state of bonding between the 
two (in this case) orbitals. Thus, a large, positive 
value of qtj indicates a strong bond between the respec­
tive atoms, and a large, negative value indicates strong 
antibonding. Table V gives the values of qu qn, qu, 
and qu for the functions I* through VIII* and for the 
covalent only and covalent singly polar wave functions. 
For symmetry functions these give the independent 
values, of course. Upon examination of these num­
bers, it is seen that of all the individual VB basis func­
tions III* has the largest bond order between adjacent 

ing schemes. It is interesting to look at the qt and qi} 

for the individual bond functions also. These are given 
in Table VI for the functions I through VIII, which 
are, of course, not symmetry functions. A comparison 
of the qtj for mutually ortho positions with the bonding 
diagrams shows that the prescription for writing the 
VB functions and the above bonding criterion based 
originally on properties of MO functions are certainly 
consistent in that the bonding diagrams show bonds 
in the same places as do the overlap charges. However, 
it is also seen that the bonds between adjacent atoms 
for all these functions are about the same order, varying 
only from 0.0947 to 0.0986. One of the largest of the 
bond orders is in the function III, but the appearance 
of the large ortho bond order in HI* would not be ex­
pected from an examination of the qt] for III. It is 
observed that III has one of the largest ortho antibond­
ing orders, also. It might be expected that there would 
be some sort of cancelation between the bonding and 
antibonding effects in the ortho positions when the 
symmetry function is formed. Indeed, some such 
phenomenon appears to be operating in the transforma­
tion I -*• I*. However, in the case of III -»• III* there 
seems to be a synergistic effect between the charge sepa­
ration and the bonding that prevents such cancelations, 
and in this case the ortho bonding is actually higher 
than any of the values in III. The exact nature of this 
phenomenon is not now clear, but its consequences 
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are clear in that III* provides by far the largest amount 
of overlap charge density of all the symmetry func­
tions. 1S 

One-Electron Terms in the Matrix Elements 

Since we have worked out the first-order density 
matrices, these may be used to examine the behavior 
of the various VB functions with regard to the contri­
butions of the kinetic energy, the nuclear attraction, and 
the repulsion between the a electrons and the pz or-
bitals. The electron repulsion within the w orbitals 
will be examined later. The atomic and overlap charge 
densities discussed in the last section may be used for 
this purpose. Thus, if we have 

fa = <P<l/iP;> (7) 

F = E/< (8) 
i 

we get, using (5) and (6) 

<*|F|*> = £?</« + HlufulSii (9) 
t i<3 

These expressions work in this simple case since all the 
orbitals are real. Table VII gives the values of the 

Table VII. Matrix Elements for p* Orbitals 

i 

1 
1 
1 
1 

J 

1 
2 
3 
4 

>J ij 

1.00000 
0.32004 
0.07841 
0.04417 

Ti1ISiJ 

1.25159 
0.32571 
0.06937 
0.00702 

K(nuc) iy/S,7 

-13 .749 
-12 .504 
-12 .174 
-12 .172 

V(COK)UlSiJ 

10.810 
10.164 
10.009 
10.052 

independent matrix elements / y /S« for the kinetic en­
ergy and the nuclear attraction energy. In addition, 
the values of the pseudo-one-particle matrix elements 
(U Ta — K^u/Sn = V(COTe)1JlSiJ are given in the table. 
The latter quantities are easily calculated from the 
two-electron integrals over AO's and the cr-core density 
matrix, viz. 

V(COTe)1J = T,{2[ij\rs] - [ir\js]}y(core)rs (10) 

The energy corresponding to any of the VB functions 
may be written in the form 

E(M = 
T, + Tc+V„+V„+ GTT + G„ + G„a + £nuc (11) 

where the subscripts give the source of the various 
contributions. For the functions that we have chosen 
with the <r electrons represented the same way at all 
times Tc + Gv0. + EnuQ is a constant, and all the dif­
ferences among the various functions arise from the 
7T electrons. Table VIII gives values of T„ Vr, GTT, 
GT„, and V1, + GTir + G^ for each of the functions 
P-VIII* and I-VIII. An examination of the entries 
in Table VIII shows no particular pattern to the num­
bers for either the individual VB functions or the sym-

(18) This effect cannot operate in the H2 molecule since it requires the 
presence in the same function of both covalent and ionic type linkages. 
However, if one examines the VB function for describing two H2 mole­
cules simultaneously, it is found that a mixed polar-covalent function 
produces the largest overlap charge density of the individual symmetry 
functions, and the effect is nearly independent of the distance between 
the two molecules. Further publications on this point are planned. 
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Table VIII. Contributions to the Energy for Various VB Functions 

Vr + Grr + 

I* 
I 
II* 
II 
III* 
III 
IV* 
IV 

v* 
V 
VI* 
VI 
VII* 
VII 
VIII* 
VIII 

a 
b 

Tr 

7.2139 
7.3533 
7.2590 
7.5633 
6.5213 
7.5302 
6.7714 
7.7682 
7.1959 
7.8775 
7.1214 
7.8785 
7.3424 
7.6329 
7.7757 
8.1011 
7.1974 
6.4299 

Vr 

-82 .0872 
-82.2827 
-82 .1552 
-82.9423 
-81.1681 
-82.5248 
-81.5005 
-82 .8392 
-82 .0612 
-82 .9925 
-81.9758 
-82.9794 
-82.2746 
-82.6767 
-82.8569 
-83 .3286 
-82 .0724 
-81 .0370 

Grr 

3.7085 
3.7050 
3.7072 
4.1848 
3.9300 
3.9613 
3.9923 
3.9488 
3.9664 
4.0690 
4.3379 
4.0607 
4.1527 
4.1076 
4.0902 
4.0893 
3.7103 
3.8484 

GlT(T 

64.6451 
64.7486 
64.6827 
64.7839 
64.1699 
64.8757 
64.3461 
65.0345 
64.6312 
65.1191 
64.5901 
65.1079 
64.7470 
64.9590 
65.0500 
65.3046 
64.6396 
64.0989 

Gr a 

-13.7336 
-13.8291 
-13 .7653 
-13 .9736 
-13 .0682 
-13.6878 
-13 .1671 
-13.8529 
-13 .4636 
-13 .8044 
-13.0478 
-13.8108 
-13.3749 
-13.6101 
-13.7167 
-13.9347 
-13.7225 
-13.0897 

" Values for covalent only function. 6 Values for covalent and 
singly polar function. 

metry functions. Indeed, there appears to be a cer­
tain randomness present. 

One of the most important principles that has been 
used in the qualitative discussion of VB bonding has 
been the idea that charge separation contributes to 
destabilization of a structure in which it occurs. The 
entries in Table VIII provide a test of this idea. If we 
consider an extremely naive model for a moment, it is 
seen that the numbers corresponding to ortho, meta, 
and para distances across the ring 

IM8:1/(V7Sr12) :l/(2r12) = 0.3782 :0.2183 :0.1891 (au) 

should be proportional to the energy of charge separa­
tion in the ortho/meta/para singly polar VB functions 
as far as the potential energy is concerned. However, 
there is very little if any indication that such a mech­
anism is operating for these functions. There is per­
haps a slight tendency for III and III* to have a more 
positive (less stable) value of Vr + GTr + G™ than 
the Kekule structure, but any effect of the sort under 
discussion appears to be largely masked by other more 
sizable phenomena. 

The values of the electronic repulsion energy in the 
TV shell do show a trend for the symmetry functions. 
Thus the structures with two electrons in one px orbital 
have higher energies than those for the covalent struc­
tures. However, the situation with the individual 
bond functions is different in spite of the fact that these 
VB functions might be expected to be simpler than the 
symmetry functions. Here the Dewar structure has 
the greatest repulsion energy. 

When the actual diagonal matrix element of the en­
ergy is formed from these various contributions it is 
seen that there is some tendency for the differences to 
cancel, and these diagonal elements are reordered so 
that III* is the most stable with I* the next. This is 
the order of appearance in the wave function. It ap­
pears, therefore, that all attempts at approximate evalu­
ation of the matrix elements of VB functions are likely 
to fail since the actual values and their importance are 
due to a rather delicate balancing of large terms. It 
may also be fairly noted that no mention of the size 
and importance of off-diagonal matrix elements has 
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been made. The natural feeling would, we believe, 
lead one to expect these to be even more difficult to 
estimate than the diagonal elements. This conclusion 
if it is indeed correct leads to considerable pessimism 
concerning the success of approximate or "semiem-
pirical" VB calculations. 

Finally, we call attention to the values for Gm. In 
semiempirical and approximate treatments the effect 
of the core is assumed to be constant for all the VB 
basis functions. As can be seen, these quantities vary 
fully as much as the other contributions to the matrix 
elements. Therefore, the assumption of a constant 
core-valence interaction, at least for the model con­
sidered here, is a severe oversimplification. 

In this connection the exact effect of the form we 
have taken for the a electrons may be questioned. The 
basic assumption is, of course, that the electron cor­
relation in the a shells makes no significant contribu­
tions to the way that the VB functions describe the cor­
relation in the TT shells. This could be tested by open­
ing some of the a MO's in the CI treatment, but we 
have not done this. Results of a rather different sort 
suggest, however, that the values of GC1, are quite in­
sensitive to the nature of the a orbitals. This is in­
dicated by the fact that the use of the very minimal 
basis suggested by Christofferson19 for the a MO's gives 
very nearly the same values of K(core)i,/Sw. In this 
test Whitten's basis was still retained for the p3 orbitals, 
of course. 

Resonance Energy Calculations 

One of the early successes of the VB theory of benzene 
was the explanation of its extra stability over that pre­
dicted by the assumption of the additivity of empirical 
bond energies. This added stability was attributed to 
quantum mechanical resonance and hence was called 
the resonance energy. The method used by Pauling 
and Wheland to calculate the resonance energy was 
simply to find the difference between the energy of a 
single Kekule structure and the wave function I* + 
II*. This difference was expressed as 1.11a in terms 
of an unevaluated "exchange intergral" a. The com­
parison of several similar systems suggested the value 
of a to be approximately 32 kcal/mol. The result for 
benzene is a resonance energy of 36 kcal/mol. This 
calculation is easily duplicated with the ab initio values 
.presented in this paper, and from Tables II and VII 
it is seen that the value of the resonance energy we ob­
tain is 0.0493 au (30.9 kcal), somewhat lower than the 
semiempirical value. 

However, Wheland20 and Mulliken and Parr21 crit­
icized the above semiempirical results on the basis that 
the calculations were done at the experimental geom­
etry of benzene and the empirical calorimetric res­
onance energies were obtained from energies of bonds 
at other internuclear distances. They pointed out that 
a "compression" energy of the bonds is involved if the 
calculations are performed at the benzene distances. 
When the compressional energy is included in the cor­
rect way, one obtains the "vertical" resonance energy 
of benzene to be 66 kcal/mol. This is a good bit higher 

(19) R. E. Christofferson, D. W. Genson, and G. M. Maggiora, J. 
Chem.Phys., 54, 239(1971). 

(20) G. Wheland, "Resonance in Organic Chemistry," Wiley, New 
York, N. Y., 1955. 

(21) R. S. Mulliken and R. G. Parr,/. Chem.Phys., 19, 1271 (1951). 

than the value arrived at above, and this fact also sug­
gests that the covalent structures alone do not provide 
an adequate representation of the benzene molecule. 

If indeed the covalent functions do not represent 
the benzene molecule in a satisfactory way, it seems 
necessary to devise a scheme for the calculation of the 
resonance energy that gives a more sophisticated de­
scription of the bonds in the molecule. Thus, within 
the framework that we are using we may attempt to 
use as a model of the hypothetical molecule with three 
isolated double bonds one in which some ionic char­
acter is built into the wave function. This has been 
done by determining the best wave function correspond­
ing to resonance among the following bonding dia­
grams. 

0-Q--Q--O-
0--O--Q 

+ 

The energy for this wave function is —230.3395 au. 
When the hypothetical molecule with three isolated 
double bonds is represented in this way, the appropriate 
representation of the actual benzene molecule is the 
wave function consisting of all symmetry functions 
I* through VIII*. Substracting the two energies gives 
a resonance energy of 0.0978 au (61.4 kcal) which is in 
very satisfactory agreement with the experimental value 
of 66 kcal. Thus it appears that the ab initio calcula­
tion can provide an acceptable comparison with experi­
ment if the model used is not too naive. 

Conclusion 

This article has given a description of an ab initio VB 
treatment of the ir system of the benzene molecule. 
In the introduction two questions were asked. The 
first of these dealt with the problem of the nature of the 
difficulties of using the standard approximations in 
doing VB calculations. As we have seen, it appears 
that the main difficulty is the relative crudeness of these 
approximations as compared to the job they must do. 
One of these assumptions that has been made and which 
we have not yet mentioned is the neglect of orbital 
overlap. It is just this overlap that produces the varia­
tion among the various first-order density matrices 
of the VB functions, of course, and hence it appears 
that this overlap neglect is a significant contributer to 
the difficulties the approximate treatments have in 
matching the ab initio results. 

The other question in the introduction dealt with the 
effects that the present results might have on the qualita­
tive bonding theories used by experimental chemists. 
Any answer that we give for this question based as it 
will be upon the single example discussed in this article 
is extremely provisional. However, there is one quite 
suggestive fact which stands out in the calculation of 
the vertical resonance energy. There we saw that the 
inclusion of some ionic character in all of the bonds in 
a uniform way results in a highly improved calculated 
value. This suggests that the bonding diagram which 
is called the Kekule structure is better represented by 
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the wave function including polar structures than by 
the single function I as has been past custom. 

Pauling22 has suggested that the so-called "resonance 
theory" of chemistry should be viewed as essentially 
empirical in nature and it "should not be identified 
with the valence-bond method of making approximate 
quantum-mechanical calculations of molecular wave 
functions and properties." We feel that the results 
of this article require that this question be reopened. 

(22) L. Pauling, "The Nature of the Chemical Bond," 3rd ed, Cornell 
University Press, Ithaca, N. Y., 1960, Section 6-5. 

Quantum chemistry has brought a major contribu­
tion to the understanding of stereospecificity in 

electrocyclic reactions. The original demonstrations 
by Woodward and Hoffmann1 and by Longuet-Higgins 
and Abrahamson2 rely on very simple hypotheses and 
attribute the origin of the phenomenon to symmetry 
effects on the ir system. Further contributions were 
mainly numerical, including the a system, and tried 
to obtain reaction paths or the heights of reaction 
barriers.3-5 In these numerical calculations it is diffi­
cult to locate the origin of the stereospecificity and to 
check the validity of the original theoretical demon­
strations. 

Both these demonstrations and numerical calcula­
tions deal with symmetry delocalized MO's, and sym­
metry considerations are often supposed to play the 
major role in the stereospecificity.1'2,6 Alternative 
approaches have been proposed, using localized SCF 
orbitals.7 In a preceding paper, a demonstration 
of the stereospecificity has been derived, using bond 
localized MO's and a perturbational development of 
the energy for the intermediate states.8 The origin 

(1) P. B. Woodward and R. Hoffmann, / . Amer. Chem. Soc, 87, 395 
(1965). 

(2) H. C. Longuet-Higgins and E. W. Abrahamson, J. Amer. Chem. 
Soc, 87, 2045 (1965). 

(3) G. Feler, Theor. Chim. Ada, 12, 412 (1968). 
(4) (a) D. Hsu, R. J. Buenker, and S. D. Peyerhimhoff, / . Amer. 

Chem. Soc, 93 2117,5005(1971); (b) ibid., 94, 5639 (1972). 
(5) J. W. Mclver and A. Komornicki, / . Amer. Chem. Soc, 94, 2625 

(1972); M. J. S. Dewar and S. Kirchner, ibid., 93, 4290, 4291 (1971). 
(6) R. B. Woodward and R. Hoffmann, "The Conservation of Orbital 

Symmetry," Verlag Chemie, Weinheim/Bergstr., Germany, 1970. 
(7) C. Trindle, /. Amer. Chem. Soc, 91, 4054 (1969); 92, 3251, 3255 

(1970); Theor. Chim. Acta, 18, 261 (1970). 
(8) J. Langlet and J. P. Malrieu, J. Amer. Chem. Soc, 94, 7254 (1972). 

Although it may be true that many parts of chemistry 
will remain essentially empirical in nature, the general 
feeling on the part of most workers that the above iden­
tification could not be made in even simple cases may 
be the result of the inadequacies of the semiempirical 
approaches rather than due to inherent deficiencies 
in the model. Certainly, further work is required to 
settle these questions. 
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of the stereospecificity is attributed there to the TT sys­
tem, through a nth order derealization contribution 
involving in a circular mode the n double bonds of the 
reacting circle. The validity of the hypothesis of this 
demonstration had been verified on the butadiene-
cyclobutene reaction using the PCILO method9 in the 
CNDO parametrization.10 The present work tries 
to remove the restrictions of the previous study: namely 
(i) these calculations were semiempirical and ab initio 
calculations might behave differently, (ii) the perturba­
tion was too strong in the transition state region and 
the perturbation series does not converge there. A 
variational procedure distinguishing IT and air factors 
and derealization and correlation corrections has to 
be proposed. 

I. Hypothesis 
The calculation is performed in a minimal basis set 

of Slater atomic orbitals with optimized exponents 
(fc(2s) = 1.759, fc(2p) = 1.670, fc(ls) = 5.679, fH = 
1.227). The atomic integrals are calculated using the 
POLYCAL program of Stevens.11 The work is done in a 
basis of fully localized bond MO's. The nonorthog-
onal Is MO's are simply the Is AO's on the carbon 
atom. The u nonorthogonal bond MO's are con­
structed from two hybrids in the valence shell satisfying 
the Del Re's criterion of maximum overlap;12 these 

(9) (a) S. Diner, J. P. Malrieu, and P. Claverie, Theor. Chim. Acta, 13, 
118 (1969); (b) S. Diner, J. P. Malrieu, F. Jordan, and M. Gilbert, 
ibid., 15, 100 (1969); (c) F. Jordan, M. Gilbert, J. P. Malrieu, and U. 
Pincelli, iftirf., 15, 211(1969). 

(10) J. A. Pople and G. A. Segal, J. Chem. Phys., 44, 3289 (1966). 
(11) R. M. Stevens, / . Chem. Phys., 52, 1397 (1970), and references 

therein. 
(12) G. Del Re, Theor. Chim. Acta, 1, 188 (1963). 
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Abstract: The origin of the stereospecificity of a concerted reaction is analyzed through an ab initio calculation. 
The method allows a distinction between the a, TT, and at: effects and confirms that the 7r electronic factors are re­
sponsible for the stereospecificity. In a localized approach, the main stereospecific contribution is the ir derealiza­
tion energy between the T bonds as suggested in a previous demonstration. However, a stereospecific short range 
repulsion effect also appears, due to the overlap between the ir bonds. 
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